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Report on the conference

PROGRESS IN MATHEMATICAL PROGRAMMING *

Asilomar Conference Center, Pacific Grove, California

March 1-4, 1987

Abstract. The main topic of the conference was developments in the theory

and practice of linear programming since Karmarkar's algorithm. There were thirty

presentations and about fifty people attended. Presentations included new algorithms,

new analyses of algorithms, reports on computational experience, and some other

topics related to the practice of mathematical programming.

• Host organization: IBM. Financial support from the Office of Naval Research and

from IBM Corporation is gratefully acknowledged. Organized by Nimrod Megiddo. IBM

Almaden Research Center. 650 Harry Road. San Jose. CA 95120-6099. and School of

Mathematical Sciences. Tel Aviv University. Tel Aviv. Israel.
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The conference "Progress in Mathematical Programming" was held at the Asilomar

conference center in Pacific Grove, California, March 1-4, 1987. This conference followed

a previous one, titled "New directions in Mathematical Programming", which was held at

the Postgraduate Naval School in Monterey in February 1986 in Monterey, California. The

idea of the second conference was to have a follow up meeting for exchanging information

on progress made since the first conference.

)----terestjigly, most of the progress reported at the conference was on the theoretical

side. Several new polynomial algorithms for linear programming were presented,(Barnes-

Chopra-Jensen GoldfarbMeou izuno-Yoshise, Renegar, Todd, Vaidya, and

Ye). The common feature to most of the new polynomial algorithms is the path-following

aspect. The method of McCormick-Sofer for convex programming also follows a path.)

Other algorithms were presented were by Be~k#-Gritznman , ,l" ers-

Wright, Nazareth, Vial, and Zikan-Cottle.'Efforts in the theoretical analysis of algorithms

was also reported, (Anstreicher, Bayer-Lagarias, Imai, Lagarias, Megiddo-Shub, Lagarias,

Smale, and Vanderbei).NComputational experiences were reported by Lus'ig, Tomlin,

Todd, Tone, Ye, and Zikan-Cottle.Of special interest, although not in the main direc-

tion discussed at the conference, was the -report by Rinaldi on the practical solution of

some large traveling salesman problems. At the time of the conference it was still not

clear whether the new algorithms developed since Karmarkar's algorithm would replace

the simplex method in practice. Alan Hoffman presented results on conditions under which

linear programming problems can be solved by greedy algorithms. In other presentations,

Fourer-Gay-Kernighan presented a programming language (AMPL) for mathematical pro-

gramming, David Gay presented graphic illustrations of the performance of Karnarkar's

algorithm, and James Ho discussed possible embedding of linear programming in commonly

used spreadsheets. f

The participants in the conference were Ilan Adler, Kurt Anstreicher, Earl Barnes,

David Bayer, Lenore Blum, Richard Cottle, Robert Fourer, David Gay, Philip Gill, Neal

Glassman, Donald Goldfarb, Clovis Gonzaga, Harvey Greenberg, Peter Gritzmann, James

K. Ho, Alan Hoffman, T. C. Hu, Hiroshi Imai, Jeffrey Kennington, Masakazu Kojima, Jef-

frey C. Lagarias. Irvin Lustig, Roy Marsten. Garth McCormick. Nimrod Megiddo. Sanjay

Mehrotra. Walter Murray. Larry Nazareth. Prakash Ramanan. James Renegar. Mauricio

Resende. Giovanni Rinaldi. Linus Schrage. David Shanno. Mike Shetty. Michael Shub.
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Steve Smale, Michael Todd, John Tomlin, Kaoru Tone, Pravin V&idya, Robert Vanderbei,

Jean-Philippe Vial, Geraldo Veiga, Yinyu Ye, and Karel Zikan.

Abstracts of the papers are given below. A volume of refereed proceedings is now in

preparation. However, not all the papers presented at the meeting will be represented in

this volume of proceedings. Some of those had already been submitted to journals before

the conference. The interested readers should contact the authors directly for copies of

their papers.

ABSTRACTS

1. THE PROJECTIVE SUMT METHOD FOR CONVEX PROGRAMMING,

Garth P. McCormick, Department of Operations Research, SEAS, GWU, Wash-

ington, DC 20052 and Ariela Sofer, Department of Operations Research and Ap-

plied Mathematics, George Mason University, Fairfax, Virginia 22030.

The projective SUMT method is derived from the differential equation characterizing the

trajectory of unconstrained minimizers of the classical logarithmic barrier function method.

The continuous version requires the solution of a differential equation. The discrete version

generates at each iteration the same search direction and uses as the step length the so-

lution of the step size problem based on the logarithmic methods of centers. Convergence

to a global solution of a convex programming problem can be proved under minimal as-

sumptions. A version of the algorithm which handles linear equality constraints is similar

to Karmarkar's method. A polynomial bound on the number of iterations is shown under

assumptions less restrictive that those he invokes.

2. PROJECTION ALGORITHMS FOR LINEAR PROGRAMMING, U. Betke Uni-

versitat Siegen, 3, Posf. 101240, D-5900 Siegen, W. Germany, and Peter Gritz-

mann Department of Mathematics, University of Washington, Seattle, WA 98195.

Based on nearest-point projection approach we generalize the relaxation methods of Ag-

mon. Motzkin and Schoenberg to solve the feasibility problem of linear programming.

3



Application of Shor's method of space dilatation gives rise to a series of polynomial el-

lipsoidal algorithms with improved termination in case of infeasibility. Moreover, making

further use of our general projection approach which renders possible applications of vari-

able metric algorithms with exact line search, we obtain a fast and practically well-behaving

algorithm for linear programming.

3. PRELIMINARY COMPUTATIONAL EXPERIENCE WITH AN INTERIOR

POINT METHOD IN MPSIII, J. A. Tomlin, Ketron Management Science, Inc.

Mountain View, CA 94040

Integration of an interior point algorithm with a large-scale production mathematical pro-

gramming system (MPSIII) and computational experience with this system are discussed.

In particular we consider comparisons with state-of-the-art simplex implementations for

various classes of models.

4. GREEDY ALGORITHMS FOR LINEAR PROGRAMMING, A.J. Hoffman, IBM

T.J. Watson Research Center, Yorktown Heights, New York 10598, and Depart-

ment of Operations Research, Stanford University, Stanford, CA 94305

We describe some results of the last two years on the topic and advertise pertinent unsolved

problems. There are two principal themes:

A) Simple combinatorial optimization problems. ONE theorem of linear programming

simultaneously validates algorithms for minimum spanning tree (and minimum rooted

arborescence). Dijkstra shortest path algorithm (forward, backward, "mixed"), coloring

interval graphs, Frechet bounds on bivariate distribution with prescribed marginals, etc.

B) Series - parallel graphs. (1) It is shown that a nonnegative A has the property: for all b.!

maximal in P - {zIAz < b, z > 0} implies Y maximizes (1',z) on P: if and only if A arises

in a certain way from some series parallel graph. (2) Results of Aneja, Chandrasekaran,

Nair, Bein, Brucker, Tamir on optimum flows in series parallel graphs are generalized in

various ways. The central question here is to find properties of a function F(, ) of two

variables such that: if r, A, <' a. xr > 0. max7 c,x,. and "y)B <. b. y _ 0. max

4



diyj are both solved by greedy algorithms, then so is

qi A. [a] > 0, max Flci,,di )-:i

5. IMPROVED BOUNDS AND CONTAINING ELLIPSOIDS IN KARMARKAR'S

LINEAR PROGRAMMING ALGORITHM, Michael J. Todd, School of Oper-

ations Research and Industrial Engineering, Cornell University, Ithaca, NY. Re-

search supported in part by NSF Grant ECS-8602534 and the U.S. Army Research

Office through the Mathematical Sciences Institute of Cornell University.

Karmarkar's projective algorithm for linear programming provides not only primal solu-

tions but dual solutions giving bounds on the optimal value. Here we show how improved

bounds can be obtained at the expense of solving a two-dimensional linear programming

problem at every iteration, and also how an ellipsoid containing all dual optimal solu-

tions can be generated from available information. We also give the results of limited

computational experiments related to these topics.

6. BOUNDARY BEHAVIOR OF INTERIOR POINT ALGORITHMS IN LINEAR

PROGRAMMING, Nimrod Megiddo, IBM Almaden Research Center, 650 Harry

Road, San Jose, California 95120-6099, and Tel Aviv University, Tel Aviv, Israel,
and Michael Shub, IBM T.J. Watson Research Center, Box 218, Yorktown Heights,

New York 10598.

This paper studies the boundary behavior of some interior point algorithms for linear

programming. The algorithms considered are Karmarkar's projective rescaling algorithm,

the linear rescaling algorithm which was proposed as a variation on Karmarkar's algorithm.

and the logarithmic barrier technique. The study includes both the continuous trajectories

of the vector fields induced by these algorithms and also the discrete orbits. It is shown

that, although the algorithms are defined on the interior of the feasible polyhedron, they

actually determine differentiable vector fields on the closed polyhedron. Conditions are
given under which a vector field gives rise to trajectories, that each visit the neighborhoods

of all the vertices of the Klee-Mint' cube. The linear rescaling algorithm satisfies these

conditions. Thus. limits, of such trajectories obtained when a starting point is pushed to



the boundary, may have an exponential number of breakpoints. It is shown that limits of

projective rescaling trajectories may have only a linear number of such breakpoints. It is

however shown that projective rescaling trajectories may visit the neighborhoods of linearly

many vertices. The behavior of the linear rescaling algorithm near vertices is analyzed. It

is shown that all the trajectories have a unique asymptotic direction of convergence to the

optimum.

7. A NEWTON'S METHOD INTERPRETATION OF KARMARKAR'S ALGO-

RITHM FOR LINEAR PROGRAMMING, David Bayer, Box 13, Department of

Mathematics, Columbia University, New York, N.Y. 10027, and J. C. Lagarias,

2C-373. AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, N.J. 07974-

2070.

Let A be an m x n matrix of full rank with entries in R, and let b,c be vectors in R". Let

P C R" be the polytope defined by the system of inequalities Az + b 0 and let c -x be a
linear objective function defined on P. Assume that P has a nonempty interior Int P, and

that an interior point z 0 is known. Assume also that c. x attains its minimum on P at a

unique optimum point ZOpg E Int P, and that the minimum value copt = c. zoPt is known.

In this talk, we study Karmarkar's algorithm [Kar84] for solving the linear programming

problem: -find Z., minimizing c •z, subject to Az + b > 0." Karmarkar's algorithm

is based on a vector field tx : Int P -. R", and a potential function g : Int P -- R

which is minimized in the limit by sequences of points approaching Xot. Starting with the

interior point z0, successive iterates Zjx,+ are computed recursively from zj by the formula:

Z+t 1= X) + t4'K(Z), for values of t > 0 chosen so that the sequence {z,} converges to

Zopt. We consider the version of Karmarkar's algorithm where t is chosen at each step to

minimize the potential function g along the ray X, + tqtK(X)

The derivation in [Kar84] of Karmarkar's algorithm is based on the use of projective

transformations which center the successive iterates xj in transformed polytopes P'. For

this purpose, Karmarkar works with polytopes given by m - n equality constraints on the

first orthant of R'. Using techniques of classical projective geometry, we explain how to
directly make projective transformations of polytopes given in inequality form, and we give

a second derivation of Karmarkar's algorithm in this setting.



One could instead use Newton's method to minimize 9 inside the polytope P, again choos-

ing step lengths which minimize g in each step direction; this algorithm would also produce

a sequence of iterates {zj } converging to xopt. Newton's method, computed in our original

coordinate system, is not the same as Karmarkar's algorithm; however, Newton's method

is not invariant under projective transformations. We consider a projective transformation

which maps the objective hyperplane c- x - c.,t to the hyperplane at infinity; the potential

function g assumes a particularly simple form in these coordinates. We find that New-

ton's method computed in these coordinates agrees exactly, step by step, with Karmarkar's

algorithm.

We shall only be considering the steps xj+l - zx taken by iterations of Karmarkar's al-

gorithm. For a discussion of how linear programming problems can be brought into our

initial form, and of other aspects of Karmarkar's algorithm not considered in this talk,

see [Kar84]. For a presentation of a related interior point algorithm for linear program-

ming based on Newton's method, see [Ren86]. For further development of the approach

to studying centers used in this talk, see [BL86].

Bibliography

[BL86 D. Bayer, J.C. Lagarias, The non-linear geometry of linear programming, I. Affine

and projective scaling trajectories, II. Legendre transform coordinates, 111. Central trajec-

tories, preprints, AT&T Bell Laboratories (1986).

[Kar84] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combi-
natorica 4 (1984), pp. 373-395.

(Ren861 J. Renegar, A polynomial-time algorithm, based on Newton's method for linear

programming, preprint MSRI 07118-86 (1986), Mathematical Sciences Research Institute,

Berkeley, CA.

8. A POLYNOMIAL TIME ALGORITHM, BASED ON NEWTON'S METHOD,

FOR LINEAR PROGRAMMING, James Renegar, Department of Operations Re-

search, Stanford University, Stanford, CA 94305.

We present a new interior method for linear programming. It is conceptually simpler than

Karmarkar's algorithm. Also. it has a proven worst case bound that is slightly better than

Karmarkar's proven bound.
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9. AN ALGORITHM FOR LINEAR PROGRAMMING WHICH REQUIRES

0(((m +n)n2 + (m + n)1 5s n)L) ARITHMETIC OPERATIONS, Pravin M. Vaidya,

AT&T Bell Laboratories, Murray Hill, N.J.

We present an algorithm for linear programming which requires 0(((-m + n)n 2 + (in +

n)1 -5n)L) arithmetic operations where m is the number of inequalities, and n is the number

of variables. Each operation is performed to a precision of O(L) bits. L is bounded by

the number of bits in the input. This algorithm is faster than Karmarkar's algorithm by

a factor of - + n.

10. AMPL: A MATHEMATICAL PROGRAMMING LANGUAGE, Robert Fourer,

Northwestern University, Evanston, Illinois 60201, AT&T Bell Laboratories. Mur-

ray Hill, New Jersey 07974 David M. Gay, AT&T Bell Laboratories, Murray Hill,

New Jersey 07974, and Brian W. Kernighan AT&T Bell Laboratories, Murray

Hill, New Jersey 07974

Practical large-scale mathematical programming involves more than just the minimization

or maximization of an objective function subject to constraint equations and inequalities.

Before any optimizing algorithm can be applied, some effort must be expended to formulate

the under lying model and to generate the requisite computational data structures.

If algorithms could deal with optimization problems on the same terms as people, then the

formulation and generation phases might be relatively easy. In reality, however, there are

many differences between the form in which human modelers understand a problem and

the form in which algorithms solve it. Reliable translation from the "modeler's form" to

the -algorithms form" is often a considerable expense.

In the traditional approach to translation, the work is divided between human and com-

puter. First, a person who understands the modeler's form writes a computer program

whose output will be the required data structures. Then a computer compiles and executes

the program to create the algorithm's form. This arrangement is often costly and error-

prone' most seriously, the program must be debugged by a human modeler even though

its output - the algorithm's form - is not meant for people to read.



In the important special case of linear programming, the largest part of the algorithm's

form is the representation of the constraint coefficient matrix. Typically this is a very

sparse matrix whose rows and columns number in the hundreds or thousands, and whose

nonzero elements appear in intricate patterns. A computer program that produces a com-

pact representation of the coefficients is called a matrix generator. Several programming

languages have been designed specifically for writing linear programming matrix genera-

tors, and standard languages like Fortran are also often used.

Many of the difficulties of translation from modeler's form to algorithm's form can be

circumvented by the use of a computer modeling language for mathematical programming.

A modeling language is designed to express the modeler's form in a way that can serve as

direct input to a computer system. Then the translation to the algorithm's form can be

perform.ed entirely by computer, without the intermediate stage of programming.

We describe in the paper this design and implementation of AMPL, a new modeling lan-

guage for mathematical programming. AMPL is notable for the generality of its syntax,

and for the similarity of its expressions to the algebraic notation customarily used in the

modeler's form of a problem. It offers a variety of types and operations for the definition

of indexing sets, as well as a range of logical expressions.

We intend AMPL to be able to express arbitrary mathematical programming problems,

including ones that incorporate nonlinear expressions or discrete variables. However, our

initial implementation is restricted to linear expressions in continuous variables. Thus

AMPL is introduced by means of a simple linear programming example; subsequent sec-

tions examine major aspects of the language's design in more detail, with reference to three

much more complex linear programs. We also discuss a standard representation of the data

for a model, and describe our initial implementation of a translator that can interpret an

AMPL model and associated data. Finally, we compare AMPL to the languages used by

various linear programming systems, and indicate how AMPL is likely to be extended and

integrated with other modeling software.

11. ON THE MULTIPLICATIVE PENALTY FUNCTION FOR LINEAR PRO-

GRAMNMING. Hiroshi IMAI. School of Computer Science. McGill University 805

Sherbrooke Street West. Montreal. PQ. Canada H3A 2K6. and Department of

9



Computer Science and Communication Engineering, Kyushu University, Hakozaki,

Fukuoka 812, Japan

The multiplicative penalty function method for linear programming is introduced by Iri and

Imai, which is a Newton-like descent algorithm for minimizing the multiplicative penalty

function, an afline analogue of Karmarkar's potential function. It is shown that the mul-

tiplicative penalty function is convex and the algorithm converges superlinearly when the

optimum value of the linear objective function is given in advance.

In this talk, we will present several extensions of the multiplicative penalty function

method. Specifically, we extend the multiplicative penalty function method so that it

can handle the problem of unknown optimum value directly. The extended algorithm gen-

erates convergent dual solutions, where a new duality on the multiplicative function plays

an important role. This duality is on interior points of both primal and dual problems, not

on extreme points, and is discussed in detail. We also give a sufficient condition for a con-

straint to be inactive at all optimum solutions, which can be checked in the process of the

algorithm. We finally mention some connections of our algorithm with Sonnevend's and

Renegar's methods, and further refer to the strict convexity of the multiplicative version

of Karmarkar's potential function when the corresponding feasible region is bounded.

12. A BRANCH-AND-CUT ALGORITHM FOR THE RESOLUTION OF LARGE

SCALE SYMMETRIC TRAVELING SALESMAN PROBLEMS, Giovanni Ri-

naldi. IASI - CNR viale Manzoni 30. Roma Italy, and New York University, 40 W

4th Street Rm 524, New York, New York 10003

A branch-and-cut algorithm is presented for the resolution of large scale symmetric trav-

eling salesman problems.

The basic idea of branch-and-cut marries linear programming based cutting planes tech-

niques with branching techniques.

The cuts generated by the algorithm are inequalities that define facets of the TSP polytope,

and that are violated by the optimal solution of a LP relaxation. The identification of

violated inequalities is carried out by exact algorithms for the so-called subiour elimination

10



and the 2-matching constraints and by efficient heuristics for the comb and clique-trees

constraints. Computational results are reported on a wide sample of test problems solved

to optimality by the algorithm. The sizes of these problems ranges from 100 to more than

2000 cities.

13. PRICING CRITERIA IN LINEAR PROGRAMMING, J. L. Nazareth, Center

for Pure and Applied Mathematics University of California, Berkeley, CA

We propose a reduced-gradient technique for linear programming which is motivated by

the approach of Karmarkar but which builds more directly on the simplex method. We

formulate a mathematical algorithm, discuss questions that arise in its implementation

and describe the results of a simple yet instructive numerical experiment.

14. LINEAR PROGRAMMING WITH SPREADSHEET MACROS, James K. Ho,

Management Science Program College of Business Administration, University of

Tennessee Knoxville, TN 37996-0562

Linear programming (LP) models have a natural tabular format. They also arise most

frequently in managerial decisions which involve other forms of quantitative analysis which

increasingly employ spreadsheet software. It is therefore of interest to be able to model

and solve such problems directly on spreadsheets. This paper reports experience with the

design and implementation of LP as spreadsheet macros using Lotus 1-2-3. Advantages and

drawbacks of this approach are discussed. Suggestions are made for future development of

spreadsheet software to facilitate advanced applications in numerical computation such as

LP.

15. PICTURES OF KARMARKAR'S LINEAR PROGRAMMING ALGORITHM,

David M. Gay, AT&T Bell Laboratories, 600 Mountain Avenue Murray Hill, NJ

07974.

Karmarkar's linear programming algorithm handles inequality constraints by changing

variables to make all constraints about equally distant: it moves in the steepest-descent

direction seen by the new variables. This paper summarizes four variants of Karmarkar's

~11



linear programming algorithm (primal affine, primal projective, dual affine, and dual pro-

jective), discusses depicting polytopes (feasible regions), and presents pictures illustrating

the latter three variants. These pictures give an algorithm's eye view of the variable

changes and provide visual verification of certain properties.

16. THE PROBLEM OF LOWER BOUNDS IN COMPLEXITY OF LINEAR PRO-

GRAMMING, Steve Smale, Department of Mathematics, University of California,

Berkeley, CA 94720.

Consider the problem:

Minimize c.x subject to x > 0 and Ax > b. x E R" and find the solution of the dual.

Lower bounds on the speed and topology of algorithms for this problem can be expressed

in terms of "computation trees". Some first answers will be given.

17. VARIANTS OF KARMARKAR'S ALGORITHM, Donald Goldfarb, Department

of Industrial Engineering and Operations Research, Columbia University, New

York, NY 10027, and Sanjay Mehrotra, Department of Industrial Engineering,

Northwestern University, Evanston, IL 60201.

Several variants of Karmarkar's algorithm are presented, including ones which do not

require (i) exact computation of the projected gradient, (ii ) that this direction be in the

null space of the constraint matrix, and (iii) knowledge of the optimal objective value. A

variant for solving homogeneous equations over a simplex is also described.

18. APPROXIMATE PROJECTIONS IN A PROJECTIVE METHOD FOR THE

LINEAR FEASIBILITY PROBLEM, Jean-Philippe Vial, Department d'Economie

Commerciale et Industrielle, Universite de Geneve, 2 rue de Candolle, CH-1211

Geneve, Switzerland.

The key issue in implementing a projective method is the projection operation. In order

to cut down computations several authors have suggested to use approximations instead

of the projection itself. Unfortunately. using approximations may not be compatible with

12



the proofs of polynomial complexity. We propose several types of approximations which

preserve the complexity property of the version of Karmarkar's algorithm presented by de

Ghellinck and Vial. The analysis is based on a relaxation of the main convergence lemma

of the Ghellinck and Vial.

19. SHIFTED BARRIER METHODS FOR LINEAR PROGRAMMING, Philip E.

Gill, Walter Murray, Michael A. Saunders and Margaret H. Wright, Department

of Operations Research, Stanford University, Stanford California 94305-4022

Powell's derivation of augmented Lagrangian functions was based on shifting the constraint

boundaries in a penalty-function method, thereby permitting convergence for a finite value

of the penalty parameter. The analogue for barrier-function methods is to shift the location

of the singularity, and to include weights on the barrier terms. The main question we shall

address in this talk is how to choose the shifts and weights to ensure convergence. It will

be shown that the weights and shifts may be chosen so that the minimizer of the barrier

function is bounded away from a singularity. This ensures that Newton's method converges

at a quadratic rate and that the region in which quadratic convergence occurs does not

shrink as the solution to the LP is approached.

We may also apply the shifted approach to the dual LP. It will be shown that this leads

to an algorithm whose numerical characteristics are different than those of the primal

algorithm when degeneracy is present. This is not the case for the unshifted algorithm.

20. AN ALGORITHM FOR SOLVING LINEAR PROGRAMMING PROBLEMS IN

O(n3 L) OPERATIONS, Clovis C. Gonzaga, Department of Electrical Engineering

and Computer Sciences University of California Berkeley, California On leave from

COPPE-Federal University of Rio de Janeiro, CX Postal 68511, 21941 Rio de

Janeiro, RJ, Brasil.

This paper describes a short-step penalty function algorithm that solves linear program-

ming problems in no more than O(n'SL) iterations. The total number of arithmetic op-

erations is bounded by O(nSL), carried on with the same precision as that in Karmarkar's

algorithm. Each iteration updates a penalty multiplier and solves a Newton-Raphson iter-

ation on the traditional logarithmic barrier function using approximated Hessian matrices.

13



The resulting sequence follows the path of optimal solutions for the penalized functions as

in a predictor-corrector homotopy algorithm.

21. AN IMPLEMENTATION OF A REVISED KARMARKAR METHOD, Kaoru

Tone, Graduate School for Policy Science, Saitama University, Urawa. Saitama

338, Japan.

There may exist several ways of implementing the Karmarkar's algorithm. We will show

one along with preliminary numerical experiments. We deal with the standard form LP.

Starting from an initial interior point, one iteration of our method consists of choice of

basis (factorization of basis), optimality test, reduced gradient, conjugate gradient method

and determination of next point of iterate. A combination of the reduced gradients and

the conjugate gradient methods is used for generating an approximation of the steepest

descent direction of the Karmarkar's potential function. Our method can deal both with

the projective transformation and with the affine transformation. Bases which are main-

tained and updated throughout the iterations are effectively utilized. As a basis, we choose

the linearly independent columns of the coefficient matrix corresponding to the decreasing

order of the variables. The basis is then factorized in the LU-form which is utilized in the

computations throughout the iterations. Preliminary numerical experiments on problems

with dense matrices as well as with sparse ones will be reported. From the limited experi-

ences, we know that about 50-80 percent of the CPU time is spent in the CG computations

which strongly suggests the use of parallel processing in our implementation. Resolutions

of high degeneracy and null variables are crucial points to be studied further.

22. A PRIMAL-DUAL INTERIOR POINT ALGORITHM FOR LINEAR PRO-

GRAMMING, Masakazu Kojima, Department of Information Sciences, Tokyo In-

stitute of Technology, Oh-Okayama. Meguro-ku, Tokyo 152, Japan, Shinji Mizuno

and Akiko Yoshise, Department of Industrial Engineering and Management, Tokyo

Institute of Technology, Meguro-ku, Tokyo 152, Japan.

This paper presents an algorithm that works simultaneously on primal and dual linear

programming problems and generates a sequence of pairs of their interior feasible solutions.

Along the sequence generated. the duality gap converges to zero at least linearly with global
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convergence ratio (I - in/n); each iteration reduces the duality gap by at least 7/n. Here

n denotes the size of the problems and q a positive number depending on initial interior

feasible solutions of the problems. The algorithm is based on an application of the classical

logarithmic barrier function method to primal and dual linear programs, which has been

recently proposed and studied by Megiddo.

23. A NEW SIMPLE HOMOTOPY ALGORITHM FOR LINEAR PROGRAM-

MING, Lenore Blum, Department of Mathematics and Computer Science, Mills

College, Oakland, CA 94613, and Department of Mathematics, U.C. Berkeley,

Berkeley, CA 94720.

We present a new homotopy algorithm for linear programming. Its salient features are its

simple description, and that is arises naturally from mathematical considerations. Specifi-

cally, the algorithm is defined by a homotopy between the singular piecewise linear system

(representing the given problem to be solved) and a non-singular linear system (incor-

porating all the problem data). In contrast to may homotopy algorithms whose starting

points are independent of the particular problem (such as the Dantsig-Lemke Simplex al-

gorithm), this algorithm utilizes all relevant data to start. While the algorithm is primarily

of theoretical interest, preliminary computer experiments suggest orthant counts typically

favorable to Lemke pivots on large problems. In addition, the homotopy paths have inter-

esting structure and reveal information about the condition of the original problem.

24. AN EXTENSION OF KARMARKAR'S ALGORITHM AND THE TRUST RE-

GION METHOD FOR QUADRATIC PROGRAMMING, Yinyu Ye, Department

of Engineering-Economic Systems, Stanford University, Stanford, CA 94305

An extension of Karmarkar's algorithm and the trust region method is developed for solving

quadratic programming and linearly constrained programming. This algorithm is based on

the objective augmentation and the projective transformation, followed by optimization

over a trust ellipsoidal region. It creates a sequence of interior feasible points that converge

to the optimal feasible solution. The algorithm is polynomial O(Ln') if the objective is

convex and quadratic. where we count 0(n3) for solving a system of n linear equations.

In this talk. I emphasize its implementation and computational results that suggest the
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usefulness of this algorithm in practice.

25. THE AFFINE SCALING ALGORITHM AND PRIMAL DEGENERACY,

Robert J. Vanderbei, AT&T Bell Laboratories, Room 2C-115, Murray Hill, N.J.

07974.

Consider a linear program in standard form: Minimize J_- subject to Ax = b and z > 0.

Assuming nondegeneracy, the primal affine scaling algorithm is known to converge to the

optimal solution. The proof of convergence uses duality theory. The algorithm calculates

dual variables w according to the following formula: w = (AD 2'AT)- AD 2 c, where D

denotes the diagonal matrix containing the components of z. Under nondegeneracy this

formula for w as a function of x has a unique continuous extension from the interior of the

polytope to its boundary. Furthermore at the vertices this formula reduces to the usual

formula one encounters when investigating the simplex method. When a vertex is primal

degenerate there is no such continuous extension. We discuss the behavior of w in the
vicinity of a primal degenerate vertex. We show that radial limits exist and give a simple

and elegant formula for them. We hope this formula will be useful for proving convergence

of the algorithm when there is primal degeneracy.

26. POLYNOMIAL TIME CONVERGENCE OF THE AFFINE SCALING ALGO-

RITHM WITH CENTERING, Earl R. Barnes, IBM T.J. Watson Research Center.

Yorktown Heights, NY 10598, Sunil Chopra, Statistics and Operations Research

Department, New York University, New York, NY 10003, and David Jensen, De-

partment of Applied Mathematics and Statistics, State University of New York.

Stony Brook, NY 11794.

In the past three years a number of interior point methods have been introduced for solving

linear programming problems. The affine scaling algorithm is conceptually the simplest

of all these methods. However, it does not appear to converge in polynomial time as

the others do. In fact, the existing proofs of convergence are based on some assumptions

about nondegeneracy. So it is not knowi whether or not the affine scaling algorithm always

converges. In this paper. we show how to modify the affine scaling algorithm to achieve

polynomial time convergence in all situations where the set of optimal solutions is bounded.
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We consider the following linear programming problem in standard form: Minimize cTX,

subject to Am = b and z > 0. Our algorithm starts with a feasible point x0 and generates

a sequence a , ,1 , as follows:

Given x k, compute an approximate solution k of the problem Maximize ll, x., subject

to Az = b, cTX > cTzk, and z > 0. Define Dk = diag ( ,. and compute A\k =

(AD2AT)-lAD'c. Take z'X  
- - RD'(c - ATAk)/IIDt;(c - ATAk)l where 0 < R < 1

is a constant, independent of k.

When the approximate solution is taken to be k = Xk, the latter reduces to the afline scal-

ing algorithm. We show that with very little additional work we can obtain an approximate

solution resulting in an algorithm with the following property.

Let x* denote a solution. Then czk+ cTz (1 -R/(2(n+))(crk cT"). It follows

that we can solve the problem in 0(n) steps of the latter.

27. THE GEOMETRY OF LINEAR PROGRAMMING, Jeffrey C. Lagarias, AT&T

Bell Laboratories, Murray Hill, NJ 07974.

A fundamental geometric object underlying Karmarkar's linear programming algorithm

is the set of trajectories obtained by following the infinitesimal version of his algorithm.

A rational change of variable, projective Legendre transform coordinates, is introduced

that linearizes these trajectories. This change of variable maps the interior of the feasible

solution polytope P to the interior of the dual polytope Pd which may be identified with

the polar polytope P' if 0 E P. The image trajectories are geodesics of a projectively

invariant geometry on P 0 , Hilbert geometry. This work relates Karmarkar's notion of

centering to a projective duality between points inside P and hyperplanes outside P. It

gives new invariants for measuring the progress of Karmarkar's algorithm, and may lead

to better worst-case running time bounds for Karmarkar's algorithm.

28. LINEAR PROGRAMMING AND THE NEWTON BARRIER FLOW, Kurt M.

Anstreicher, Yale School of Organization and Management. Box IA, New Haven.

CT 06520.
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In this note we report a simple characteristic of linear programming central trajectories

which has a surprising consequence. Specifically, we show that given a bounded polyhedral

set P with nonempty interior, the logarithmic barrier function (with no objective compo-

nent) induces a vector field of negative Newton directions which -flows" from the center

of P, along central trajectories, to solutions of every possible linear program on P

29. THE BOX METHOD: A NEW INTERIOR-POINT ALGORITHM FOR LIN-

EAR PROGRAMMING, Karel Zikan and Richard W. Cottle, Systems Optimiza-

tion Laboratory, Department of Operations Research, Stanford University, Stan-

ford, CA 94305.

This talk will expose a new approach to solving linear programs. Like Karmarkar's method.

it generates a sequence of points belonging to the (relativ, , interior of the feasible region.

Like the simplex method, the method is combinatorial in nature and is finite in the nonde-

generate case. The method's novelty lies primarily in the simple scheme it uses to product

search directions. The underlying theory and some implementation issues of this new

method will be discussed. A specialization of the algorithm to minimum cost network

flow problems (Transportation Problems), and some computational experience will also be

presented.

30. COMPARISONS OF COMPOSITE SIMPLEX ALGORITHMS, Irvin J. Lustig,

Department of Operations Research, Stanford University, Stanford, CA 94305.

For almost forty years, the simplex method has been the method of choice for solving linear

programs. The method consists of first finding a feasible solution to the problem (Phase I),

followed by finding the optimum (Phase II). Many algorithms have been proposed which

try to combine the processes embedded in the two-phase process. This thesis will compare

the merits of some of these composite algorithms.

Theoretical and computational aspects of the Weighted Objective, Self- Dual Paramet-

ric, and Markowitz Criteria algorithms are presented. Different variants of the Self-Dual

methods are discussed. A proof is presented which shows that the Self-Dual Parametric

algorithm is equivalent to Lemke's algorithm when applied to linear programs.
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A large amount of computational experience for each algorithm is presented. These results

are used to compare the algorithms in various ways. The implementations of each algo-

rithm are also discussed. One theme that is present throughout an of the computational

experience is that there is no one algorithm which is the best algorithm for all problems.
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